通常对视觉动作识别的机器学习模型进行了对与某些对象相关联的特定情况的数据训练和测试。这是一个悬而未决的问题,训练集中的行动对象关联如何影响模型超出受过训练情况的能力。我们着手确定培训数据的属性,这些训练数据可导致具有更大泛化能力的行动识别模型。为此,我们从一种称为跨态学习的认知机制中汲取灵感,该机制指出,人类学习者通过在不同情况下观察相同概念的实例来提取概念的含义。我们对各种类型的动作对象关联进行受控实验,并在训练数据中识别动作对象共发生的关键特性,从而导致更好的分类器。鉴于数据集中缺少这些属性,这些属性通常用于培训计算机视觉文献中的动作分类器,因此我们的工作提供了有关如何最好地构建数据集以有效培训以进行更好概括的有用见解。
translated by 谷歌翻译
智能杂草系统为了执行植物特定的运营,可以有助于农业和环境的可持续性。尽管近年来对精密杂草管理的自主机器人技术造成巨大进展,但尚未实现在领域的底盖内的工作。这种系统的先决条件是可靠的检测和杂草的分类,以避免错误地喷涂,从而损坏周围的植物。实时多级杂草鉴定使特异性的杂草治疗能够显着降低除草剂的使用量。在这里,我们的第一个贡献是第一个充分的大型现实图像数据集\ texit {aiweeds}(一个图像中的一个/多种杂草),一个约10,000个亚麻的注释图像,以及在田间和花园中最常见的14个杂草从北达科他州,加利福尼亚州和中国中部的20个不同的地方取自20个不同的地方。其次,我们提供了一个完整的管道,从模型培训,最大效率将规则解优化模型部署到单板计算机上。基于\ Texit {Aiweeds}和管道,我们使用五个基准CNN模型提出了一种分类性能的基线。其中,MobileNetv2具有最短的推理时间和最低记忆消耗,是实时应用程序的合格候选者。最后,我们将MobileNetv2部署到我们自己的紧凑型自主机器人\ Textit {Sambot}以进行实时杂草检测。在亚麻领域的先前看不见的场景中实现了90 \%测试精度(具有0.2-0.3米的行间距,杂草和杂草,失真,模糊和阴影,是真实世界中精确杂草控制的里程碑。我们公开发布了DataSet和代码以生成\ URL {https://github.com/structurescomp/multi-class-weed-classification}。
translated by 谷歌翻译
我们探索粒状介质(GM)中软机器的运动,由细长杆的弹性变形产生。提出了由细菌的生理结构的低成本,迅速制造的机器人。它由刚性头部,带有电动机和电池的嵌入式和电池,以及多个弹性杆(我们的灯泡模型)来调查通用汽车的运动。弹性鞭毛在电机一端旋转,它们由于从GM的拖动而变形,推动机器人。外部拖动由鞭毛形状决定,而后者由于外部负载和弹力之间的竞争而改变。在该耦合的流体结构相互作用问题中,我们观察到增加鞭毛的数量可以减小或增加机器人的推进速度,这取决于系统的物理参数。这种简单机器人之间的功能关系中的这种非线性激励我们利用理论,数值模拟和实验来从根本上分析其力学。我们提出了一个简单的欧拉伯努利光束理论的分析框架,其能够定性地捕获这两种情况。当鞭毛变形小时,理论预测定量匹配实验。为了考虑经常在软机器人和微生物中遇到的几何非线性变形,我们实施了一种仿真框架,该框架包括弹性杆的离散微分几何形状模拟,这是一种基于电阻理论的拖曳模型,以及用于流体动力学的改进的斯托克斯法机器人头。与实验数据的比较表明模拟可以定量地预测机器人运动。总的来说,本文中提出的理论和数值工具可以在粒状或流体介质中的这类清晰的机器人的设计和控制来阐明。
translated by 谷歌翻译
在农业环境中的现代除草剂应用通常依赖于将除草剂分配给作物和杂草相似的或便携式喷雾器的大型喷雾器,这些喷雾器需要劳动密集型手动操作。前一种方法导致过度使用除草剂并减少作物产量,而后者在大规模操作中经常站立。本文介绍了能够基于计算机视觉的导航,杂草检测,完整的现场覆盖以及\ $ 400下的计算机视觉的行作物的杂草管理的第一个完全自主机器人。目标应用程序是在裁剪领域中的自主行行杂草控制,例如,亚麻和油菜,在农作物之间的间距像一只脚一样小。所提出的机器人足够小,可以在植物生长的所有阶段之间通过植物生长的阶段,同时检测杂草和喷洒除草剂。充电系统包括新设计的机器人硬件,斜坡,机器人充电臂和移动充电站。采用集成视觉算法,有效地帮助充电器对齐。结合,它们使机器人能够在现场中连续工作而不获得电力。此外,将与预处理技术相结合的基于颜色的轮廓算法用于依赖于从车载单手套摄像机的输入上的鲁棒导航。将这种紧凑的机器人纳入农场可以帮助自动化杂草控制,即使在增长的后期阶段,并通过精确定位杂草减少除草剂。机器人平台在北达科他州的亚麻籽领域进行了现场测试。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译